2,158 research outputs found

    Single-Photon Observables and Preparation Uncertainty Relations

    Full text link
    We propose a procedure for defining all single-photon observables in terms of Positive-Operator Valued Measures (POVMs), in particular spin and position. We identify the suppression of 00-helicity photon states as a projection from an extended Hilbert space onto the photon Hilbert space. We show that all single-photon observables are in general described by POVMs, obtained by applying this projection to opportune Projection-Valued Measures (PVMs), defined on the extended Hilbert space. The POVMs associated to momentum and helicity reduce to PVMs, unlike those associated to position and spin, this fact reflecting the intrinsic unsharpness of these observables. We finally extensively study the preparation uncertainty relations for position and momentum and the probability distribution of spin, exploring single photon Gaussian states for several choices of spin and polarization.Comment: 25 pages (7 Figures); revised and extended version; in submissio

    Subdynamics of relevant observables: a field theoretical approach

    Get PDF
    An approach to the description of subdynamics inside non-relativistic quantum field theory is presented, in which the notions of relevant observable, time scale and complete positivity of the time evolution are stressed. A scattering theory derivation of the subdynamics of a microsystem interacting through collisions with a macrosystem is given, leading to a master-equation expressed in terms of the operator-valued dynamic structure factor, a two-point correlation function which compactly takes the statistical mechanics properties of the macrosystem into account. For the case of a free quantum gas the dynamic structure factor can be exactly calculated and in the long wavelength limit a Fokker-Planck equation for the description of quantum dissipation and in particular quantum Brownian motion is obtained, where peculiar corrections due to quantum statistics can be put into evidence.Comment: 28 pages, latex, no figure

    Dynamical Semigroup Description of Coherent and Incoherent Particle-Matter Interaction

    Get PDF
    The meaning of statistical experiments with single microsystems in quantum mechanics is discussed and a general model in the framework of non-relativistic quantum field theory is proposed, to describe both coherent and incoherent interaction of a single microsystem with matter. Compactly developing the calculations with superoperators, it is shown that the introduction of a time scale, linked to irreversibility of the reduced dynamics, directly leads to a dynamical semigroup expressed in terms of quantities typical of scattering theory. Its generator consists of two terms, the first linked to a coherent wavelike behaviour, the second related to an interaction having a measuring character, possibly connected to events the microsystem produces propagating inside matter. In case these events breed a measurement, an explicit realization of some concepts of modern quantum mechanics ("effects" and "operations") arises. The relevance of this description to a recent debate questioning the validity of ordinary quantum mechanics to account for such experimental situations as, e.g., neutron-interferometry, is briefly discussed.Comment: 22 pages, latex, no figure

    A NLTE model atmosphere analysis of the pulsating sdO star SDSS J1600+0748

    Full text link
    We started a program to construct several grids of suitable model atmospheres and synthetic spectra for hot subdwarf O stars computed, for comparative purposes, in LTE, NLTE, with and without metals. For the moment, we use our grids to perform fits on our spectrum of SDSS J160043.6+074802.9 (J1600+0748 for short), this unique pulsating sdO star. Our best fit is currently obtained with NLTE model atmospheres including carbon, nitrogen and oxygen in solar abundances, which leads to the following parameters for SDSS J1600+0748 : Teff = 69 060 +/- 2080 K, log g = 6.00 +/- 0.09 and log N(He)/N(H) = -0.61 +/- 0.06. Improvements are needed, however, particularly for fitting the available He II lines. It is hoped that the inclusion of Fe will help remedy the situation.Comment: 4 pages, 4 figures, accepted in Astrophysics and Space Science (24/02/2010), Special issue Hot sudbwarf star

    The Origin of Hot Subluminous Horizontal-Branch Stars in Omega Centauri and NGC 2808

    Full text link
    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the UV color-magnitude diagrams of omega Cen and NGC 2808. Such stars are unexplained by canonical HB theory. In order to explore the origin of these subluminous stars, we evolved a set of low-mass stars from the main sequence through the helium-core flash to the HB for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the gap within the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash on the white-dwarf cooling curve. Under these conditions the flash convection will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium- burning interior. This phenomenon is analogous to the "born-again" scenario for producing hydrogen-deficient stars during a very late helium-shell flash. "Flash mixing" greatly enhances the envelope helium and carbon abundances and, as a result, leads to an abrupt increase in the HB effective temperature. We argue that the EHB gap in NGC 2808 is caused by this theoretically predicted dichotomy in the HB morphology. Using new helium- and carbon-rich stellar atmospheres, we show that the flash-mixed stars have the same reduced UV flux as the subluminous EHB stars. Moreover, we demonstrate that models without flash mixing lie, at most, ~0.1 mag below the EHB and hence fail to explain the observations. Flash mixing may also provide a new evolutionary channel for producing the high gravity, He-rich sdO and sdB stars.Comment: 8 pages, 5 figures, to appear in "Omega Centauri: a Unique Window into Astrophysics" (Cambridge, August, 2001), ASP Conf. Ser., edited by F. van Leeuwen, G. Piotto, and J. Hughe

    Jet-ISM Interaction in the Radio Galaxy 3C293: Jet-driven Shocks Heat ISM to Power X-ray and Molecular H2 emission

    Get PDF
    We present a 70ks Chandra observation of the radio galaxy 3C293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 10^7 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C293, typically have LH2/LX~1 and MH2/MX~1, whereas MOHEGs that are BCGs have LH2/LX~0.01 and MH2/MX~0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX~1 in the Spiderweb BCG at z=2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.Comment: Accepted by ApJ 21 pages in ApJ format, 9 figures, 8 table

    The Hottest Horizontal-Branch Stars in omega Centauri - Late Hot Flasher vs. Helium Enrichment

    Full text link
    UV observations of some massive globular clusters uncovered a significant population of very hot stars below the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either as results of the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population recently postulated to exist in some clusters. Moderately high resolution spectra of stars at the hot end of the blue HB in omega Cen were analysed for atmospheric parameters and abundances using LTE and Non-LTE model atmospheres. In the temperature range 30,000K to 50,000K we find that 35% of our stars are helium-poor (log(n_He/n_H) < -2), 51% have solar helium abundance within a factor of 3 (-1.5 <= log(n_He/n_H) <= -0.5) and 14% are helium-rich (log(n_He/n_H)> -0.4). We also find carbon enrichment in step with helium enrichment, with a maximum carbon enrichment of 3% by mass. At least 14% of the hottest HB stars in omega Cen show helium abundances well above the highest predictions from the helium enrichment scenario (Y = 0.42 corresponding to log(n_He/n_H) ~ -0.74). In addition, the most helium-rich stars show strong carbon enrichment as predicted by the late hot flasher scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence. (Abridged)Comment: 4 pages, 3 figures, uses aa.cls (enclosed), accepted as A&A Lette
    • …
    corecore